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Abstract

We consider an adaptive importance sampling approach to estimating the marginal likeli-
hood, a quantity that is fundamental in Bayesian model comparison and Bayesian model
averaging. This approach is motivated by the difficulty of obtaining an accurate estimate
through existing algorithms that use Markov chain Monte Carlo (MCMC) draws, where
the draws are typically costly to obtain and highly correlated in high-dimensional settings.
In contrast, we use the cross-entropy (CE) method, a versatile adaptive Monte Carlo algo-
rithm originally developed for rare-event simulation. The main advantage of the importance
sampling approach is that random samples can be obtained from some convenient density
with little additional costs. As we are generating independent draws instead of correlated
MCMC draws, the increase in simulation effort is much smaller should one wish to reduce
the numerical standard error of the estimator. Moreover, the importance density derived via
the CE method is grounded in information theory, and therefore, is in a well-defined sense
optimal. We demonstrate the utility of the proposed approach by two empirical applications
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applications the proposed CE method compares favorably to existing estimators.
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1 Introduction

This paper proposes a simple yet effective adaptive importance sampling approach to estimating
marginal likelihoods that is readily implementable in a vast variety of econometric applications.
The calculation of marginal likelihood, which is obtained by integrating the likelihood function
with respect to the prior distribution, has attracted considerable interest in the Bayesian litera-
ture due to its importance in Bayesian model comparison and Bayesian model averaging. In fact,
there is a vast literature on estimating the normalizing constant of a given density by Markov
chain Monte Carlo (MCMC) methods; see Gelfand and Dey (1994), Newton and Raftery (1994),
Chib (1995), Gelman and Meng (1998), Chib and Jeliazkov (2001), Fruhwirth-Schnatter and
Wagner (2008) and Friel and Pettitt (2008), among many others. Although substantial progress
has been made from the statistics side in the last two decades, estimation of marginal likeli-
hood, particularly in high-dimensional settings, remains a difficult problem. It continues to be
especially elusive in applied economic work due to the practical and computational burdens
characterizing existing methods.

More specifically, not only do existing approaches often require nontrivial programming efforts,
most involve using MCMC draws to compute certain Monte Carlo averages, which are then used
to derive an estimate of the normalizing constant. One major drawback of this approach is that
MCMC draws are typically costly to obtain. To compound the problem in high-dimensional
settings, the draws are also often highly correlated. This is especially problematic, for example,
when the researcher wishes to compare several similar models with a small dataset, where
the marginal likelihoods under each model are expected to be similar, and therefore accurate
estimates are required. For instance, to reduce the numerical standard error of an estimator
with independent samples by a tenfold, one needs to increase the simulation effort by a factor
of 100. With correlated MCMC draws, however, the increase in sample size could be much
larger. In a typical situation in high-dimensional settings where the effective sample size is, say,
0.02 (i.e., inefficiency factor equals 50), one needs to increase the simulation effort by 5000 to
achieve the same reduction in the numerical standard error. In addition, since posterior draws
are usually costly to obtain, the computational effort required to discern the competing models
may be formidable.

In view of these drawbacks, we consider instead an adaptive importance sampling approach
to estimating the marginal likelihood, where random samples can be obtained from some con-
venient density with little additional costs. In addition, since we are generating independent
draws, the increase in simulation effort is much smaller should one wish to reduce the numeri-
cal standard error of the estimator. The importance sampling approach is perhaps one of the
earliest attempts to tackle the problem of marginal likelihood estimation; in fact, an early ap-
plication of the importance sampling idea can be traced back to Geweke (1989). Of course,
the trade-off in applying direct importance sampling is the complexity related to choosing an
importance density from which to sample, and such a choice is not obvious in general. Typi-
cally, for importance sampling to be successful, the importance density should at least satisfy
the following three properties: (i) it is heavier-tailed than the target density, such that the
resulting estimator has finite variance, (ii) it is practically simple to draw samples from, and
(iii) it is easy to evaluate at any particular point in its support. Consequently, an ad hoc choice
of the importance density is likely to render the method impractical; yet, the choice of a “good”
importance density is not always trivial.
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Recently, Hoogerheide et al. (2007) present an innovative technique for estimation by fitting
adaptively a mixture of Student-t distributions to the posterior density. Importance sampling
is then used to obtain various quantities of interest, using the fitted mixture as an importance
density. Ardia et al. (2010) later show that this approach allows an efficient and reliable esti-
mation of marginal likelihood that performs well against existing methods. We build on this
line of research by proposing a methodological procedure for deriving an importance density
that is in a well-defined sense optimal. Moreover, the proposed approach is generally applicable
to a vast class of econometric models, including various high-dimensional latent data models
(see Section 5). More specifically, we use the cross-entropy (CE) method, which is a versatile
adaptive Monte Carlo algorithm originally developed for rare-event simulation by Rubinstein
(1997). Since its inception, it has been applied to a diverse range of estimation problems, such
as network reliability estimation in telecommunications (Hui et al., 2005), efficient simulation
of buffer overflow probabilities in queuing networks (de Boer et al., 2004), adaptive indepen-
dence sampler design for MCMC methods (Keith et al., 2008), estimation of large portfolio loss
probabilities in credit risk models (Chan and Kroese, 2010), and other rare-event probability
estimation problems involving light- and heavy-tailed random variables (Kroese and Rubinstein,
2004; Asmussen et al., 2005). A recent review of the CE method and its applications can be
found in Kroese (2010), and a book-length treatment is given in Rubinstein and Kroese (2004).

The CE method for importance sampling involves the following fundamental insights. First,
for marginal likelihood estimation there exists an importance density that gives a zero-variance
estimator.1 In fact, if we use the posterior density as the importance density, then the associated
importance sampling estimator has zero variance. Clearly, while in principle the posterior
density gives the best estimator possible, it cannot be used in practice as its normalizing constant
is the very unknown quantity we seek to estimate. On the other hand, a computationally
tractable density that is “close” to the posterior density should be a good candidate, in the sense
that its associated estimator has a small variance. The CE method for importance sampling
seeks to locate within a given parametric family the importance density that is the “closest” to
the zero-variance importance density, using the Kullback-Leibler divergence, or the cross-entropy
distance as a measure of closeness between the two densities. As long as the parametric family
embodies the properties of convenient density evaluation and sample generation, the resulting
density will typically yield an efficient and straightforward importance sampling algorithm.

From a statistics perspective, therefore, estimating the marginal likelihood by the CE method
proposed here is attractive because it inherits the well-known properties of importance sam-
pling estimation. Moreover, employing an information-theoretic criterion for optimality is both
conceptually and practically appealing to economists. Indeed, information theory presents a
familiar approach in contemporary econometrics. For example, Zellner (1991) showed that min-
imizing the Jeffreys-Kullback-Leibler distance between input information and output informa-
tion in the process of learning from data leads to exactly the Bayes’ Rule upon which Bayesian
inference is founded. Moreover, applying Bayes’ Rule results in the equivalence between input
information and output information such that Bayesian information processing is 100% efficient.
Another important application of information theory in econometrics is formalized as maximum
entropy econometrics (Golan et al., 1996) where emphasis is placed on efficiently extracting in-
formation from the data with minimal a priori assumptions about the data-generating process.
In this framework, rather than specifying and estimating a parametric likelihood function, the

1More generally, zero-variance importance distributions exist for estimation problems of the form EH(X),
where H is a positive function.
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researcher instead estimates an empirical distribution composed of a set of weights assigned to
the data points. To choose one of the infinitely many possible sets of weights, entropy is used to
establish the information-theoretic criterion that is minimized subject to the observed sample
moments. Maasoumi (1993) and Golan (2008) provide comprehensive overviews of information
theory applications in econometrics. Tools offered by information theory have also been em-
ployed (dating back to Arrow, 1970; Marschak, 1971) by economists in the theoretical modeling
of risk and uncertainty.

On the practical side, it turns out that deriving the importance density by minimizing its cross-
entropy distance to the posterior amounts to an exercise identical to likelihood maximization.
Finally, we note that although the proposed approach also requires MCMC draws for obtaining
the optimal importance density, the number of draws needed is typically small (a few thousands
or less). In consequence, one obtains a marginal likelihood estimator that is relatively simple
to implement and does not require auxiliary reduced-run simulations in a wide variety of ap-
plications. In addition, the proposed approach leads to a straightforward procedure to perform
prior sensitivity analysis without the need to have multiple MCMC runs. This is important as
the value of the marginal likelihood is often sensitive to the prior specification. It is therefore
sensible to investigate if the conclusions based on the marginal likelihood criterion are robust
under different, yet reasonable, priors.

Despite their marked importance, model comparison and prior sensitivity analysis are often
omitted in applied econometric work due to the programming and computational complexi-
ties characterizing the existing methods for computing marginal likelihoods. The CE method
aims to overcome this by providing a more accessible methodology to applied economists with-
out sacrificing effectiveness: as demonstrated by the empirical examples of Section 5, the CE
method generally compares favorably with the most popular existing methods — and quite
often provides substantial gains — in terms of computational efficiency.

The rest of this article is organized as follows. We first review the problem of estimating the
marginal likelihood in Section 2, which is of importance in Bayesian econometrics and statistics.
We then discuss two practical adaptive importance sampling approaches to tackle the problem
in Section 3: the variance minimization (VM) and cross-entropy (CE) methods, with particular
focus on the latter. We then discuss in Section 4 a straightforward procedure to perform a
prior sensitivity analysis via the proposed approach without having multiple MCMC runs. In
Section 5 we present two empirical examples to demonstrate the utility and effectiveness of the
proposed approach. The first example involves women’s labor market participation. There we
compare three different binary response models in order to find the one that best fits the data.
The second example considers three popular vector autoregressive (VAR) models to analyze the
interdependence and structural stability of four U.S. macroeconomic time series: GDP growth,
inflation, unemployment rate and interest rate.

2 Marginal Likelihood Estimation

To set the stage, consider the problem of comparing a collection of models {M1, . . . ,MK}. Each
model Mk is formally defined by a likelihood function p(y |θk,Mk) and a prior on the model-
specific parameter vector θk denoted as p(θk |Mk). A popular criterion to compare between
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models Mi and Mj is the posterior odds ratio between the two models:

POij ≡
p(Mi |y)
p(Mj |y)

=
p(Mi)

p(Mj)
× p(y |Mi)

p(y |Mj)
,

where p(Mk |y) is the posterior model probability of model Mk and

p(y |Mk) =

∫
p(y |θk,Mk)p(θk |Mk)dθk

is the marginal likelihood under model Mk. The ratio p(y |Mi)/p(y |Mj) is often referred to as
the Bayes factor in favor of model Mi against model Mj . If both models are equally probable a
priori, i.e., p(Mi) = p(Mj), the posterior odds ratio between the two models is then equal to the
Bayes factor. In addition, if we assume that the set of models under consideration is exhaustive,
i.e.,

∑K
k=1

p(Mk |y) = 1, we can use the posterior odds ratios to obtain the posterior model
probabilities. Specifically, it is easy to check that

p(Mi |y) =


1 +

K∑

k 6=i

POki




−1

.

For a more detailed discussion of the marginal likelihood and its role in Bayesian model com-
parison and model averaging, see Gelman et al. (2003) and Koop (2003).

For moderately high-dimensional problems, analytic calculation of the marginal likelihood is al-
most never possible. But with the advent of the Markov chain Monte Carlo methods, substantial
progress has been made to estimate this quantity using simulation methods. For notational con-
venience, we suppress the model index from here onwards and write the marginal likelihood as
p(y). There are many different approaches to estimate p(y) via MCMC methods, and here we
mention two popular ones. Gelfand and Dey (1994) first realize that for any probability density
function f with support contained in the support of the posterior density, one has

E

[
f(θ)

p(θ)p(y |θ)

∣∣∣∣ y
]

=

∫
f(θ)

p(θ)p(y |θ)p(θ |y)dθ

=

∫
f(θ)

p(θ)p(y |θ)
p(θ)p(y |θ)

p(y)
dθ = p(y)−1. (1)

Therefore, they propose the following estimator for p(y):

p̂GD(y) =

{
1

L

L∑

l=1

f(θl)

p(y |θl)p(θl)

}−1

, (2)

where θ1, . . . ,θL are posterior draws. Even though the equality in (1) holds for any density
function f , the estimator p̂GD(y) is biased, i.e., E[p̂GD(y)] 6= p(y) in general. Moreover, its
accuracy depends crucially on the choice of the tuning function f . In view of this, Geweke (1999)
proposes choosing f to be a normal approximation to the posterior density with a tail truncation
determined by asymptotic arguments. We note in passing that the CE method described in
this paper may be easily adapted to provide an alternative to the tuning function suggested
in Geweke (1999). However, the resulting estimator p̂GD(y) would nevertheless be based on
correlated MCMC draws from the posterior distribution, rather than truly independent draws
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from the importance density, thereby still embodying a disadvantage relative to importance
sampling algorithm we propose.

Another approach to computing the marginal likelihood, which is due to Chib (1995), does not
require a tuning function. Indeed, the principal motivation for this approach is that “good”
tuning functions are often difficult to find. To proceed, note that the marginal likelihood can
be written as

p(y) =
p(y |θ)p(θ)
p(θ |y) .

Hence, a natural estimator for p(y) is the quantity (written in logarithmic scale)

log p̂(y) = log p(y |θ∗) + log p(θ∗)− log p̂(θ∗ |y)

where θ∗ is any point in the support of the posterior distribution. In practice, it is often chosen
to be some “high density” point such as the posterior mean or mode. The only unknown
quantity is the posterior ordinate p(θ∗ |y), which may be estimated by Monte Carlo methods.
In particular, if posterior draws are obtained via the Gibbs sampler — i.e., when all the full
conditional distributions are known — then p(θ∗ |y) can be estimated by sampling draws from a
series of suitably designed Gibbs samplers, the so-called reduced runs. This approach, however,
requires complete knowledge of all conditional distributions in the Gibbs scheme, which greatly
restricts its applicability in practice. To overcome this limitation, Chib and Jeliazkov (2001)
extend the basic approach to include cases when the full conditional distributions are intractable
and Metropolis-Hastings steps are required. However, implementation of these extensions are
considerably more involved, especially for computing numerical standard errors of marginal
likelihood estimates. In addition, like the estimator of Gelfand and Dey (1994), the Chib’s
estimator is also biased. There are many other approaches to marginal likelihood estimation,
and we refer interested readers to the articles Han and Carlin (2001) and Friel and Pettitt (2008)
for a more comprehensive review.

3 The Proposed Cross-Entropy Estimator

3.1 Importance Sampling and the Cross-Entropy Method

The basic idea of importance sampling — a fundamental Monte Carlo approach to estimating
the expected value of an arbitrary function of random variables — is to bias the sampling
distribution in such a way that more “important values” are generated in the simulation. The
simulation output is then weighted to correct for the use of the biased distribution to give an
unbiased estimator. Specifically, to estimate the marginal likelihood p(y) =

∫
p(y |θ)p(θ)dθ,

we consider the following importance sampling estimator:

p̂IS(y) =
1

N

N∑

n=1

p(y |θn)p(θn)

g(θn)
, (3)

where θ1, . . . ,θN are independent draws obtained from the importance density g(·) that domi-
nates p(y | ·)p(·), i.e., g(x) = 0 ⇒ p(y |x)p(x) = 0. Although the estimator in (3) is unbiased and
consistent for any such g, the performance of the estimator, particularly its variance, depends
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critically on the choice of the importance density. In what follows, we apply the cross-entropy
(CE) method, which establishes a well-defined criterion for the optimal choice of g, and gen-
erates a straightforward procedure to derive the optimal importance density. The CE method
derives its name from the cross-entropy or Kullback-Leibler divergence — a fundamental con-
cept in modern information theory. Textbook treatments of the CE method can be found in
Rubinstein and Kroese (2004) and Kroese et al. (2011, ch. 13); a recent survey of entropy and
information-theoretic methods in econometrics is given in Golan (2008).

As previously discussed, the principal motivation of the CE approach is the fact that there exists
an importance density that gives a zero variance estimator. That is, if we use the posterior
density as the importance density, i.e., g(θ) = p(θ |y) = p(y |θ)p(θ)/p(y), then the associated
importance sampling estimator (3) has zero variance:

p̂IS(y) =
1

N

N∑

n=1

p(y |θn)p(θn)

g(θn)
=

1

N

N∑

n=1

p(θn)p(y |θn)

p(θn)p(y |θn)/p(y)
= p(y),

and we need to produce only N = 1 sample. For later reference we denote this zero-variance
importance density as g∗. Although in principle g∗ gives the best possible estimator for p(y),
it cannot be used in practice because the normalization constant of the density depends on the
marginal likelihood, which is exactly the quantity one wishes to estimate. However, this suggests
a practical approach to obtain an optimal importance density. Intuitively, if one chooses g “close
enough” to g∗ so that both behave similarly, the resulting importance sampling estimator should
have reasonable accuracy. Hence, our goal is to locate a convenient density that is in a well-
defined sense “close” to g∗. To this end, consider a parametric family F = {f(θ;v)} indexed
by some parameter vector v within which we locate the importance density. We will shortly
discuss various considerations in choosing such a family; for the moment we assume that F
is given. Now, we wish to find the density f(θ;v∗) ∈ F such that it is the “closest” to g∗.
We consider two popular directed divergence measures of densities, which correspond to the
variance minimization (VM) and cross-entropy methods (CE). Let h1 and h2 be two probability
density functions. The Pearson χ2 measure between h1 and h2 is defined as:

D2(h1, h2) =
1

2

(∫
h1(x)

2

h2(x)
dx− 1

)
.

Since every density in F can be represented as f(·;v) for some v, the problem of obtaining the
optimal importance density now reduces to the following parametric minimization problem:

v∗
vm = argmin

v

D2(g
∗, f(·;v)).

Note that the value that minimizes any affine transformation of D2(g
∗, f(·;v)) also minimizes

D2(g
∗, f(·;v)) itself. Hence, we also have

v∗
vm = argmin

v

p(y)2[2D2(g
∗, f(·;v)) + 1] = argmin

v

∫
p(y |θ)2p(θ)2

f(θ;v)
dθ. (4)

From this it can be shown that minimizing the Pearson χ2 measure is the same as minimizing
the variance of the associated importance sampling estimator. In other words, f(θ;vvm) gives
the minimum variance estimator within the parametric class F . For this reason, this procedure
is termed the variance minimization method. For a more detailed discussion of the Pearson χ2

measure and its applications, we refer the readers to Botev and Kroese (2011).
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In practice, the optimization problem in (4) is often difficult to solve analytically. Instead, we
consider its stochastic counterpart:

v̂vm = argmin
v

1

L

L∑

l=1

p(y |θl)p(θl)

f(θl;v)
, (5)

where θ1, . . . ,θL are draws obtained from the posterior density p(θ |y) ∝ p(y |θ)p(θ). Note
that the optimization problem in (5) is equivalent to solving the following equation

1

L

L∑

l=1

p(y |θl)p(θl)

f(θl;v)
∇v log f(θl;v) = 0, (6)

where ∇v is the gradient operator, which can be solved by various root-finding algorithms. The
VM method is summarized as follows:

Algorithm 1. VM Algorithm for Marginal Likelihood Estimation

1. Obtain a sample θ1, . . . ,θL from the posterior density g∗(θ) = p(θ |y) ∝ p(y |θ)p(θ) and
find the solution to (5) or equivalently (6), which is denoted as v̂∗

vm.

2. Generate a random sample θ1, . . . ,θN from the density f(·; v̂∗
vm) and estimate p(y) via

importance sampling, as in (3).

One potential problem with the VM method is that in high-dimensional settings, the optimiza-
tion problem in (5) or (6) might be difficult to solve. This motivates the consideration of a more
convenient measure of “distance” between densities that leads to straightforward optimization
routines in obtaining the optimal importance density. Let h1 and h2 be two probability den-
sity functions. The Kullback-Leibler divergence, or cross-entropy distance between h1 and h2 is
defined as follows:

D1(h1, h2) =

∫
h1(x) log

h1(x)

h2(x)
dx.

As before, given the cross-entropy distance and a parametric family F , we then locate the
density f(·;v) ∈ F such that D1(g

∗, f(·;v)) is minimized:

v∗
ce = argmin

v

D1(g
∗, f(·;v))

= argmin
v

(∫
g∗(θ) log g∗(θ)dθ − p(y)−1

∫
p(y |θ)p(θ) log f(θ;v)dθ

)
,

where we used the fact that g∗(θ) = p(y |θ)p(θ)/p(y). Since the term
∫
g∗(θ) log g∗(θ)dθ does

not depend on v, solving the CE minimization problem is equivalent to finding

v∗
ce = argmax

v

∫
p(y |θ)p(θ) log f(θ;v)dθ. (7)

Once again, we consider the stochastic counterpart of (7):

v̂∗
ce = argmax

v

1

L

L∑

l=1

log f(θl;v), (8)
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where θ1, . . . ,θL are draws from the posterior density. In other words, v̂∗
ce is exactly the

maximum likelihood estimate for v if we view f(θ;v) as the likelihood function with parameter
vector v and θ1, . . . ,θL an observed sample. Since finding the maximum likelihood estimator
(MLE) is a very well understood problem, solving (8) is typically easy. We summarize the CE
method as below:

Algorithm 2. CE Algorithm for Marginal Likelihood Estimation

1. Obtain a sample θ1, . . . ,θL from the posterior density g∗(θ) = p(θ |y) ∝ p(y |θ)p(θ) and
find the solution to (8), which is denoted as v̂∗

ce.

2. Generate a random sample θ1, . . . ,θN from the density f(·; v̂∗
ce) and estimate p(y) via

importance sampling, as in (3).

3.2 Choice of the Parametric Family F

We now discuss various considerations in choosing the parametric family F . First of all, it is
obvious that it should be easy to generate random samples from any members of F ; otherwise
it would defeat the purpose of the proposed approach. This requirement, however, can be
easily met as efficient random variable generation is a very well-understood research area, and
there is a large variety of densities at our disposal from which samples can be readily obtained.
Second, the computational burden of evaluating the density f(θ;v) at any point θ should be
sufficiently low, as this evaluation must be performed for each importance draw. To that end,
most multivariate distributions that satisfy the first criterion of easy random sample generation
are likewise straightforward to evaluate.

Additionally, the optimization problem (8) should be easily solved either analytically or nu-
merically. Once again, this requirement can be easily met as solving (8) amounts to finding
the MLE if one views f(·;v) ∈ F as the likelihood for v. In fact, for the applications in the
next section, the optimization problem (8) can either be solved analytically, or reduced to a
one-dimensional maximization problem. In addition, by choosing f(θ;v) as a product of densi-
ties, e.g., f(θ;v) = f(θ1;v1) × · · · × f(θB ;vB), where θ = (θ1, . . . ,θB) and v = (v1, . . . ,vB),
one can reduce the possibly high-dimensional maximization problem (8) into B low-dimensional
problems, which can then be readily solved (albeit at some expense of “closeness” in the result-
ing importance density to the posterior). It is likewise worth mentioning that the exponential
family provides a particularly appealing class of distributions in choosing F , since analytical
solutions to (8) can often be found explicitly for such distributions (e.g., Rubinstein and Kroese,
2004, p. 70).

A final, and slightly less obvious to handle consideration is that the importance density must be
heavier-tailed than the posterior density in order for p̂IS(y) to have finite variance. Suppose that
the posterior/likelihood is sufficiently peaked and well-behaved such that

∫
p(y |θ)2p(θ)dθ < ∞,

then the crude Monte Carlo estimator, i.e., the importance sampling estimator associated with
the importance density g(θ) = p(θ), has finite variance. Hence, if we choose the family F
such that p(θ) ∈ F , then by construction the estimator associated with f(·;v∗

vm) has a smaller
variance than the crude Monte Carlo estimator, and consequently its variance is also finite; see
Proposition 2 in the next section for the exact statement, and Appendix B for the proof. As
for the CE estimator (with importance density f(·;v∗

ce)), although the question of whether it
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always provides variance reduction (compared to the crude Monte Carlo estimator) remains
open in general, in a wide variety of applications the CE and VM estimators have very similar
performance. For example, in estimating buffer overflow probabilities, de Boer et al. (2004)
find that the CE and VM estimators are essentially identical; in the settings of estimating the
probabilities that sums of independent random variables are larger than a given threshold, Chan
et al. (2011) find that in all the cases studied both VM and CE methods prescribe the same
importance sampling parameters. Furthermore, there are numerous heuristics to monitor the
stability of the importance sampling estimator. For example, if the variance is indeed finite, we
should observe that an increase in the size of the importance sample by a factor of φ decreases
the numerical standard error by a factor of

√
φ. Since sampling from any member of F is by

construction inexpensive, this monitoring presents little additional difficulty. Consequently, if
one finds that additional sampling fails to decrease the numerical standard error of the marginal
likelihood estimate, the parametric family should be appropriately expanded/modified. We
emphasize, however, that in our experience this complication is rarely present, and in such
exceptional cases when it does occur, the adjustments to F necessary to achieve the finite
variance property are often obvious.

3.3 Properties of the Proposed Estimators

In this section we document various desirable properties of the VM and CE estimators. Recall
that both are importance sampling estimators of the form given in (3), where the importance
density g(θ) is f(·;v∗

vm) for the VM estimator and f(·;v∗
ce) for the CE estimator. In particular,

one can easily show that both the VM and CE estimators are unbiased, in contrast to the
estimators of Gelfand and Dey (1994) and Chib (1995), which are biased. Throughout this
section we assume:

Assumption 1. For any given data y, the likelihood function is bounded in the parameter
vector θ, i.e., there exists θ̂ such that p(y |θ) 6 p(y | θ̂) for all θ in the parameter space.

Assumption 1 is a mild regularity condition that, for example, is necessary for the existence
of the maximum likelihood estimator. We need this assumption to show that the marginal
likelihood p(y) is in fact finite.

Proposition 1. Suppose p(θ) is a proper prior and Assumption 1 holds. Further assume that
both f(·;v∗

vm) and f(·;v∗
ce) dominate p(y | ·)p(·), i.e., f(x;v∗

vm) = 0 ⇒ p(y |x)p(x) = 0. Then
the VM and CE estimators are consistent and unbiased.

The proof is given in Appendix B. In addition, if the likelihood is sufficiently well-behaved, one
can further show that the variance of the VM estimator is finite, and therefore the central limit
theorem applies to give an asymptotic distribution for the estimator.

Proposition 2. Suppose
∫
p(y |θ)2p(θ)dθ < ∞ and Assumption 1 holds. If the parametric

family F contains the prior density p(θ), then the variance of the VM estimator is finite.
Furthermore, the VM estimator has an asymptotic normal distribution.

The reader is referred to Appendix B for a detailed proof.
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4 Prior Sensitivity Analysis

A common criticism of the Bayes factor as a criterion in comparing non-nested models is that
the value of marginal likelihood is often sensitive to the prior specification of the model-specific
parameters. Unless the researcher has a strong theoretical justification of the priors entertained,
it is often a good practice to perform a prior sensitivity analysis to investigate if the conclusions
made based on the Bayes factor criterion are robust under different, yet reasonable, priors.
We describe in this section how one can perform a prior sensitivity analysis via the proposed
approach without the need to have multiple MCMC runs to estimate the marginal likelihood
under each prior specification.

When two models under comparison (e.g. Mi and Mj) have the same parameter vector θ (i.e.
θi = θj = θ), then the Bayes factor may be computed in a rather straightforward fashion that
does not involve explicit marginal likelihood computation, as long as draws from one of the
posterior distributions are available. To see this, note that

p(y |Mi) =

∫
p(y |θ,Mi)p(θ |Mi)

p(θ |y,Mj)
p(θ |y,Mj)dθ

=

∫
p(y |θ,Mi)p(θ |Mi)

p(y |θ,Mj)p(θ |Mj)/p(y |Mj)
p(θ |y,Mj)dθ

= p(y |Mj)

∫
p(y |θ,Mi)p(θ |Mi)

p(y |θ,Mj)p(θ |Mj)
p(θ |y,Mj)dθ.

Therefore, we have

BFij =

∫
rij(θ)p(θ |y,Mj)dθ,

where

rij(θ) =
p(y |θ,Mi)p(θ |Mi)

p(y |θ,Mj)p(θ |Mj)
.

Hence, given the sample θ1, . . . ,θL from the posterior density p(θ |y,Mj), an importance sam-
pling estimate of BFij (the Bayes factor in favor of Mi) is

B̂Fij =
1

L

L∑

l=1

rij (θl) . (9)

In fact, Kim et al. (1998) utilize this importance sampling idea to perform exact inference when
θ is sampled from an approximated model. In their case, the “true” model is a nonlinear state
space model for which it is difficult to construct an efficient MCMC sampling scheme. Their
solution is to approximate this nonlinear model using a mixture of linear models, where each of
these models can be estimated efficiently using the Gibbs sampler. Given the draws obtained
from the approximated model, they then use importance reweighing to compute posterior mo-
ments of parameters under the true model.

For our purpose, suppose that we have a marginal likelihood estimate under a certain prior
distribution, and we would like to obtain an estimate under a different prior. To this end,
consider models Mi and Mj where the two models differ only in their prior distributions, i.e.,
p(y |θ,Mi) = p(y |θ,Mj). Now, rij(θ) reduces to simply the ratio of the two priors. Conse-
quently, if one has an estimate of the marginal likelihood under Mj and posterior draws from
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p(y |θ,Mj), one can obtain an estimate for the marginal likelihood under Mi via (9). However,
it is readily observed that for the importance sampling estimator (9) to work well, it is crucial
that the variability of the ratio rij(θ) is small under the posterior distribution p(y |θ,Mj);
otherwise, estimates of BFij might be driven by a select few realizations of θ, and hence, be
rendered rather unstable. In other words, this approach can only reasonably accommodate
subtle to moderate differences in prior specifications. For radical differences, they will need
to be compared by computing marginal likelihoods p(y |Mi) and p(y |Mj), separately. Hence,
the accurate computation of marginal likelihoods is of central concern in model comparison
exercises and related interests.

To that end, we note that the proposed importance sampling approach of Section 3 likewise
provides a straightforward way to perform a prior sensitivity analysis without the need to have
multiple MCMC runs. In addition, unlike the approach in (9), it is robust across rather different
prior specifications, as long as the posterior distribution does not change drastically under the
different priors. To motivate the procedure, recall that the CE method consists of two steps:
first, we obtain MCMC draws (under a certain prior) to locate the optimal importance density.
Second, we generate independent draws from the importance density to give an estimate as
in (3). Now suppose that we have posterior draws from p(θ |y,Mj), and wish to estimate the
marginal likelihood p(y |Mi) with the corresponding prior p(θ |Mi). As shown previously, the
zero-variance importance density for estimating p(y |Mi) is the posterior density p(θ |y,Mi).
However, in many situations, even though the priors are very different under the two models
Mi and Mj, the corresponding posterior distributions are similar (e.g., when the sample size is
moderately large). In those cases, draws from p(θ |y,Mj) are a good representation of draws
from p(θ |y,Mi). Hence, we can simply use the MCMC draws from the former to obtain v̂∗

ce

as in (8), then deliver the importance sampling estimator (3) with the prior p(θ |Mi). In what
follows, we demonstrate that this approach works well across quite different prior specifications,
and further show that the numerical standard error of the importance sampling estimator hardly
changes.

5 Empirical Applications

In this section, we present two empirical examples to illustrate the proposed importance sam-
pling approach for estimating the marginal likelihood. In each of these examples, the implemen-
tation is straightforward, and the estimate is accurate even for relatively small sample sizes. In
the first example we consider three binary response models for women’s labor market partici-
pation with logit, probit and t links. Since the link function is often chosen out of convenience
rather than being based on modeling considerations, a formal model comparison exercise seems
appropriate to determine which model best fits the data. The second empirical example is con-
cerned with the US post-war macroeconomic time-series data involving GDP growth, inflation,
unemployment and interest rate. We fit three popular vector autoregressive (VAR) models and
formally compare them.

12



5.1 Binary Response Models for Women’s Labor Market Participation

In the first application we analyze a dataset from Mroz (1987) that deals with the labor market
participation decision of 200 married women using three binary response models with logit,
probit and t links. Eight covariates are used to explain the binary indicator of labor market
participation — a constant, non-wife income, number of years of education, years of experience,
experience squared (divided by 100), age, number of children less than six years of age in the
household, and number of children older than six years of age in the household. The likelihood
for each of the binary response models has the form

p(y |β) =
200∏

i=1

pyii (1− pi)
1−yi , (10)

where β is a k × 1 parameter vector, pi = F (x′
iβ) is the probability that the ith subject will

participate in the labor market, F (·) is a cumulative distribution function (cdf), yi ∈ {0, 1} is
the binary outcome variable, and xi is the covariate vector of the ith subject in the sample.

For the binary logit model, the cdf F is assumed to be logistic: F (z) = (1 + e−z)−1; for the
binary probit model, F (z) = Φ(z), where Φ is the cdf of the standard normal distribution.
Lastly, F is assumed to be the cdf of a standard t distribution with degree of freedom ν = 10
in the t model.

5.1.1 The Priors and Marginal Likelihood Estimation

For each of the three models, we assume a multivariate normal prior for β: β ∼ N(β0,V0) with
β0 = 0. Since the three models imply different variances (π2/3 for the logit model, 1 for the
probit model, and ν/(ν − 2) for the t model), we scale the covariance matrix V0 accordingly
to ensure the same prior is assumed across models. Specifically, we set V0 = τI for the logit
model, V0 = 3/π2 × τI for the probit model, and V0 = 3ν/(π2(ν − 2)) × τI for the t model.
The form of the prior (multivariate normal) is chosen for computational convenience — it is a
conjugate prior for both the probit and the t-link models — and is standard in the literature. To
investigate the effect of the hyperparameters of the prior, we include a prior sensitivity analysis
over a set of reasonably weakly-informative priors (with τ = 5, 10, 100) in the subsequent model
comparison exercise.

We locate the optimal importance density within the parametric family F = {fN(β;b,B)}
indexed by (b,B), where fN(· ;µ,Σ) is the multivariate normal density with mean vector µ and
covariance matrix Σ. Let β1, . . . ,βN be the posterior draws from a given model. To obtain
the CE reference parameters (b̂, B̂) for the optimal importance density, we need to solve the
maximization problem (8). It is easy to check that the solution is simply

b̂ =
1

N

N∑

i=1

βi, B̂ =
1

N

N∑

i=1

(βi − b̂)(βi − b̂)′. (11)

In this case, therefore, the somewhat “obvious” choice of importance density, i.e. multivariate
normal parameterized by the posterior mean and posterior variance, is justified as the optimal
choice among all possible multivariate normal distributions. That is, setting the mean and
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variance at the respective posterior counterparts minimizes its cross-entropy distance to the
posterior density. As it turns out, it also leads to a well-performing importance sampling
algorithm that generates efficient estimates of the marginal likelihood.

To demonstrate the latter, for each of the three models we obtain a sample of size L = 5000 from
the posterior density under the prior variance τ = 10 after a burn-in period of 500 draws, and
compute b̂ and B̂ as in (11). Given the optimal importance density fN(β; b̂, B̂), we estimate the
marginal likelihoods of the three models, each with three different prior variances (τ = 5, 10, 100)
by the importance sampling estimator in (3). For the main importance sampling run, we set
the sample size to be N = 5000.

5.1.2 Empirical Results

The importance sampling estimates for the log marginal likelihoods of the binary logit, probit
and t models, as well as their numerical standard errors, are given in Table 1. Since the dataset
is relatively small (sample size 200), the estimated marginal likelihoods for the three models
are similar. Therefore, it is important in this case for the numerical standard errors for the
estimates to be small. Under the set of priors considered, the probit model seems to be favored
by the data. In fact, if one assumes that the three models are equally likely a priori, then
the posterior probabilities for the logit, probit and t models are respectively about 25%, 45%
and 30% under all three prior specifications. Hence, for this particular dataset, the data shows
moderate support for the probit model, while the logit and t models are more or less equally
likely.

Table 1: Log marginal likelihood (numerical standard error) for the logit, probit and t models
for various prior specifications.

logit probit t-link

τ = 5 −138.68(0.005) −138.13(0.004) −138.85(0.004)
τ = 10 −141.24(0.004) −140.67(0.003) −141.08(0.003)
τ = 100 −150.23(0.005) −149.64(0.004) −150.06(0.005)

We also report the model parameter estimates for the probit model for τ = 10 in Table 2,
together with the posterior standard deviations and the probabilities that the parameters are
positive. All parameter estimates have signs that are consistent with economic theory. For
instance, non-wife income, age and the number of children in the household have a negative
impact on the probability that an average woman will participate in the labor market. On
the other hand, education and experience both have a positive impact, though the impact
of experience is diminishing (the impact is quadratic in years of experience). However, note
the large posterior standard errors for the coefficients associated with the variables experience
squared and children older than six.
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Table 2: Parameter posterior means, standard deviations, and probabilities being positive for
the probit model.

Covariate E(· |y)
√

Var(· |y) P(· > 0 |y)
Constant 0.282 0.832 0.631
Non-wife income −0.012 0.009 0.085
Education 0.113 0.046 0.995
Experience 0.100 0.041 0.992
Experience squared −0.074 0.147 0.292
Age −0.049 0.014 0.001
Children younger than six −0.811 0.222 0
Children older than six −0.005 0.080 0.475

5.1.3 Comparison with Other Methods

We now compare the empirical performance of the proposed CE estimator with two other
popular methods for estimating the marginal likelihood. The first is the estimator of Gelfand
and Dey (1994) with the tuning function suggested in Geweke (1999) — more precisely, a
multivariate normal density truncated to its 95% highest density region — and we call this
the GD-G method. The second estimator is the the method of Chib (1995) (for Gibbs output)
and Chib and Jeliazkov (2001) (for Metropolis-Hastings output), and we refer to this the CJ
method. We use each of the three methods to estimate the marginal likelihoods of the three
binary response models, and compare the methods in terms of computation time and numerical
accuracy. Implementation details are given as follows. For the CE method, we first use L = 2500
MCMC draws to compute the optimal importance sampling density for each of the three models,
and then sample N = 50000 draws from the density obtained for the main importance sampling
run. For both the GD-G and CJ methods, we use L = 50000 MCMC draws to estimate the
marginal likelihood. But instead of one long chain, we run 10 parallel chains each of length
L = 5000, so that the numerical standard errors of the estimates can be readily computed.2

It is worth noting the different factors affecting the computation times of the three methods.
Since both the GD-G and CJ methods require a lot of MCMC draws, when those draws are
more costly to obtain (e.g., more costly in the t-link model than in the probit model), both
methods tend to be slower. When reduced runs are required, as in the logit model, the CJ
method tends to be slower (the other two methods do not require reduced runs). Finally, when
the evaluation of the (integrated) likelihood function is more costly (e.g., more costly in the
t-link model than in the probit model), the GD-G and CE methods — both require numerous
evaluations of the likelihood function — tend to be slower.

2More precisely, the numerical standard error is calculated as the sample standard deviation of the 10 estimates
divided by

√

10.
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Table 3: Log marginal likelihood estimate, numerical standard error, and computation time (in
second) for the three methods. Variance reduction is approximately the amount of time needed
to have the same level of accuracy as the CE method.

Probit
estimate NSE time (s) var. reduction

GD-G -140.69 0.0025 33 15.5
CJ -140.68 0.0081 27 133.1
CE -140.67 0.0011 11 1.0

Logit
estimate NSE time (s) var. reduction

GD-G -141.26 0.0028 36 8.7
CJ -141.24 0.0050 66 50.9
CE -141.24 0.0018 10 1.0

t-link
estimate NSE time (s) var. reduction

GD-G -141.16 0.0062 54 13.9
CJ -140.83 0.0179 37 79.2
CE -141.08 0.0024 26 1.0

We report in Table 3 the marginal likelihood estimate (in log), its numerical standard error and
the computation time (in second) for each of the three methods. For all the binary response
models, the proposed CE method is both the quickest and provides the most accurate estimates.
To compare the methods with the same denominator, we also provide the “variance reduction”
of the CE method compared to the other two methods. For example, to achieve the same level
of accuracy as the CE method for estimating the marginal likelihood of the probit model, the
GD-G method would take about 15.5 (33/11 × (0.0025/0.0011)2 ) times longer than the CE
method. It is obvious from the results that the CE method provides substantial improvements
over the other two competing methods.

5.2 Vector Autoregressive Models for U.S. Macroeconomic Time Series

In the second empirical application we analyze a dataset obtained from the US Federal Reserve
Bank at St. Louis website3 that consists of 248 quarterly observations from 1948Q1 to the
2009Q4 on n = 4 U.S. macroeconomic series: output (GDP) growth, interest rate, unemploy-
ment rate, and inflation.

One fundamental question is: which time-series specification considered previously in the litera-
ture best models the evolution and interdependence among the time series? To make a first step
towards answering this question, we perform a formal Bayesian model comparison exercise to
compare three popular time-series specifications. The first model we consider is a basic vector
autoregressive (VAR) model. Pioneered by Sims (1980), it has traditionally been employed to
capture the interdependence among the time series. Specifically, for t = 1, . . . , T , we consider

3The website is: http://research.stlouisfed.org/fred2/.
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the first-order VAR model

yt = µ+ Γyt−1 + εt, εt ∼ N(0,Ω), (12)

where yt is a vector containing measurements on the aforementioned n = 4 macroeconomic
variables (output growth, unemployment, income, and inflation), µ is an n× 1 vector of inter-
cepts, Γ is an n × n matrix of parameters that governs the interdependence among the time
series, and Ω is an unknown n × n positive definite covariance matrix. The analysis is per-
formed conditionally on the initial data point and consequently our sample consists of T = 247
observations.

For the purpose of estimation, (12) is rewritten in the form of a seemingly unrelated regression
(SUR) model as follows:

yt = Xtβ + εt, (13)

whereXt = I⊗(1,y′
t−1), β is a q×1 (q = n2+n) vector containing the corresponding parameters

from µ and Γ, ordered equation by equation, i.e., β = vec ((µ,Γ)′), and the vec(·) operator
stacks the columns of a matrix into a vector. Stacking the observations in (13) over t, we have

y = Xβ + ε, ε ∼ N(0, I ⊗Ω),

where

y =




y1

...
yT


 , X =




X1

...
XT


 , ε =




ε1
...
εT


 .

Although the traditional VAR model is a popular specification for macroeconomic series, it is not
flexible enough to accommodate potential structural instabilities in the times series. In view of
this, in our second specification we extend the basic VAR model (12) by allowing the parameter
vector β to evolve over time in order to study the potential structural change of the time series.
In particular, we consider the following first-order time-varying parameter vector autoregressive
(TVP-VAR) model (e.g., Canova, 1992; Carter and Kohn, 1994; Koop and Korobilis, 2010):

yt = µt + Γtyt−1 + εt, εt ∼ N(0,Ω), (14)

where the parameters µt and Γt now have a subscript t to denote the time period. The evolution
of the parameter vector βt = vec ((µt,Γt)

′) for t = 2, . . . , T is governed by the evolution equation

βt = βt−1 + νt, (15)

with β1 ∼ N(0,D), where νt ∼ N(0,Σ), and Σ = diag(σ2
1
, . . . , σ2

q ) is an unknown q×q diagonal
matrix. The transition equation (15) allows the elements of βt to evolve gradually over time
by penalizing large changes between successive values, thus a priori favoring the simple VAR
model with time-invariant parameters.

Another approach to extend the traditional VAR model (12) is the following dynamic factor
VAR (DF-VAR) model (e.g., Bernanke et al., 2005; Koop and Korobilis, 2010):

yt = µ+ Γyt−1 +Aft + εt, εt ∼ N(0,Ω), (16)
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where Ω = diag(ω2
1 , . . . , ω

2
n) is a diagonal matrix, A is an n× 1 vector of factor loadings, and ft

is an unobserved factor that captures economy-wide macroeconomic volatility, which is assumed
to evolve as

ft = γft−1 + ηt, ηt ∼ N(0, σ2

f ), (17)

for t = 2, . . . , T , and the initial factor f1 is distributed according to the stationary distribution
f1 ∼ N(0, σ2

f/(1 − γ2)) with |γ| < 1. Since neither the factor loadings A nor the factorft is
observed, the scale and sign of A and ft are not individually identified becauseAft = (cA)(ft/c)
for any c 6= 0. One popular identification assumption is to fixed the first element of A at 1, i.e.,
A = (1,a′)′ and a is an (n − 1)× 1 vector of free parameters. With this assumption, both the
sign and scale identification problems are resolved.

5.2.1 The Priors and Marginal Likelihood Estimation

In this subsection we describe the priors used in the three models and provide the implemen-
tation details of the proposed importance sampling approach. Since the value of marginal
likelihood in general is sensitive to the choice of priors, we maintain the same priors across
models where appropriate. In addition, we consider a set of reasonable yet weakly-informative
priors in a prior sensitivity analysis to see how the marginal likelihood estimates are affected
by the choice of priors.

For the VAR model, the parameters are β and Ω with independent prior distributions: Ω ∼
IW(ν0,S0) and β ∼ N(β0,Vβ), where IW(·, ·) is the inverse-Wishart distribution, ν0 = n +
3,β0 = 0 and Vβ = 10× I. These are conjugate priors and are standard in the literature. For
S0 we consider two cases: S0 = I and S0 = 0.1×I. Standard results from the SUR model can be
applied to sample from the posterior density, e.g., see Koop (2003). To estimate the marginal
likelihood of the model, we consider the parametric family F = {fN(β;b,B)fIW(Ω; ν,S)}, where
fIW(·; ν,S) is the density of IW(ν,S). Given the posterior output {βl,Ωl}Ll=1

, the optimal CE

reference parameters b̂ and B̂ can be obtained as in (11). As for ν̂ and Ŝ, first note that

Ŝ−1 =
1

νL

L∑

l=1

Ω−1

l .

Now by substituting S = Ŝ−1 into the density fIW(·; ν,S), ν̂ can be obtained by any one-
dimensional root-finding algorithm (e.g., Newton-Raphson method). Alternatively, simply fixing
ν̂ = T also gives reasonable results. The former approach is the one we use for the empirical
example.

For the TVP-VAR model, we assume that Ω ∼ IW(ν0,S0) and each diagonal element of Σ
follows, independently, an inverse-gamma distribution: σ2

i ∼ IG(ν0i/2, S0i/2), for i = 1, . . . , q,
with D = 10 × I, ν0 = n + 3, and ν0i = 6, S0i = 0.01 for i = 1, . . . , q. For S0, we consider two
cases: S0 = I and S0 = 0.1 × I. Posterior inference is based on a recently proposed algorithm
in Chan and Jeliazkov (2009), which we briefly describe in Appendix A. More importantly
for our purpose, it also gives an efficient way to evaluate the integrated likelihood, defined as
the likelihood function marginal of the state vector β (see Appendix A for details). Hence,
to compute the marginal likelihood of the TVP-VAR model, we can work with the integrated
likelihood f(y |Ω,Σ) rather than the complete-data likelihood f(y |β,Ω,Σ). This approach
substantially reduces the variance of the importance sampling estimator as we analytically
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“integrate out” β that consists of 247 βt’s, each of which is a 20-dimensional vector. Generally,
in situations where the integrated likelihood f(y |θ) cannot be efficiently evaluated, one has
to work with the complete-data likelihood f(y | z,θ), where z is the latent variable vector.
The proposed approach proceeds as before, with the optimal importance density f(θ, z; v̂ce)
constructed from the posterior draws. In this case, however, the variance of the associated
estimator is no smaller than the case where integrated likelihood f(y |θ) can be efficiently
evaluated. Now, to obtain the optimal importance density for the TVP-VAR model, we consider
the parametric family

F = {fIW(Ω; ν,S)

q∏

i=1

fIG(σ
2
i ;mi, si)}.

The optimal CE parameters {ν̂ , Ŝ} are obtained as in the previous case. Moreover, since the
inverse-gamma density is a special case of the inverse-Wishart density, (m̂i, ŝi), i = 1, . . . , q can
be obtained similarly.

Lastly, the priors for the parameters in the DF-VAR model are given as follows: β ∼ N(β0,Vβ),
a ∼ N(a0,Va), and γ is distributed uniformly on the interval (−1, 1), with β0 = 0, Vβ = 10× I

and a0 = 0. For Va, we consider two cases Va = I and Va = 5 × I. In addition, each
diagonal element ofΩ = diag(ω2

1
, . . . , ω2

q ) follows, independently, an inverse-gamma distribution:
ω2
i ∼ IG(ν0i/2, S0i/2), for i = 1, . . . , q, and finally, σ2 ∼ IG(νf , Sf ), where νf = ν0i = 6,

Sf = S0i = 1. Posterior inference is based an efficient MCMC sampler discussed in Chan
and Jeliazkov (2009). Specifically, instead of sequentially drawing from the full conditionals,
we implement the following collapsed Markov sampler that substantially improves the mixing
properties and reduces the autocorrelation of the Markov chain:

Algorithm 3. Collapsed MCMC Sampling of β and A

1. [β |y,A,Ω, γ, σ2], which does not depend on f = (f1, . . . , fT )
′

2. [a, f |y,β,Ω, γ, σ2], which is done using

(a) [a |y,β,Ω, γ, σ2], which does not depend on f

(b) [f |y,β,A,Ω, γ, σ2]

3. [Ω |y,β,A, f ]

4. [γ | f , σ2]

5. [σ2 | f , γ]

Again, the integrated likelihood is evaluated using the efficient algorithm described in Ap-
pendix A. Now, to locate the optimal importance density, we consider the following parametric
family

F =

{
fN(θ;bθ,Bθ)fN(γ; bγ , Bγ)fIG(σ

2;m, s)}
q∏

i=1

fIG(ω
2
i ;mi, si)

}
,

where θ = (β′,a′)′. Since the densities are either normal or inverse-gamma, the optimal CE
reference parameters can be obtained exactly in the same way as before.
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5.2.2 Empirical Results

Estimation results of the VAR, TVP-VAR and DF-VAR models for the U.S. macroeconomic
data are each based on a sample of L = 10000 MCMC draws after a burn-in of 500 draws, which
are obtained by the MCMC samplers described in Section 5.2.1. We first present in Figure 1 the
main parameter of interest in the TVP-VAR model, β, the time-varying intercepts and VAR
coefficients. The figure reveals that except for those coefficients in the unemployment equation,
all the others exhibit considerable instability over the sampled periods, particularly the early
part of the sample and the late 70s/early 80s. This suggests that the TVP-VAR model, which
allows for structural changes in the time series, seems to be a more suitable model for the U.S.
data compared to the restrictive VAR model, which assumes constant coefficients over time.
In fact, results from a formal exercise of Bayesian model comparison shows that this is indeed
the case (see below). Another point that is worth noting is that the impact of all the lagged
macroeconomic variables on GDP growth appears to have drifted towards zero in the latter part
of the sample. This supports the contention of a “Great Moderation” in U.S. output growth
volatility that economic growth in the U.S. has become more stable over time due to lower
dependence on past outcomes.

1960 1980 2000
−1

−0.5

0

0.5
GDP growth equation

1960 1980 2000
−0.4

−0.2

0

0.2

0.4

0.6
Inflation rate equation

1960 1980 2000
−0.5

0

0.5

1

1.5
Unemployment equation

1960 1980 2000
−1

0

1

2

3
Interest rate equation

 

 

µ
t−1

GDP
t−1

inflation
t−1

unemp
t−1

interest
t−1

Figure 1: Evolution of the parameters βt in the TVP-VAR model.
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We also estimate the DF-VAR model using the same U.S. post-war macroeconomic data, and
the estimated latent dynamic factor is reported in Figure 2, as well as the timing of officially
announced U.S. recessions (shaded regions). We first note that from the figure it is apparent that
the latent factor captures the timing of these recessions rather well. The ability of the model
to capture these features is remarkable because what followed the officially announced end of
the 1990–1991 recession was a period of jobless growth when unemployment actually increased
and remained elevated for several years. Recovery from the 2001 recession was stymied by the
immediate aftermath of the 9/11 attacks, which affected consumer behavior, investor sentiment
and demand in key industries. In addition, the dynamic factor approach also gives an indication
of the relative severity and evolution of each recession. In fact, it suggests that the most recent
recession following the subprime mortgage crisis and the collapse of several U.S. largest financial
institutions is the most severe one in the post-war period. See Jeliazkov and Liu (2010) for a
formal analysis on the ranking of U.S. post-war recessions.
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Figure 2: Evolution of the latent dynamic factor ft in the DF-VAR model, together with the
timing of officially announced U.S. recessions (shaded regions).

To formally compare the three time-series specifications, we compute the marginal likelihoods
for the models via the proposed importance sampling approach. More specifically, for each
model, we first use the posterior draws to estimate the optimal CE reference parameters for
the importance density. Then we obtain an estimate for the marginal likelihood via importance
sampling (which involves only normal and inverse-Wishart distributions) with a sample size of
N = 10000. In particular, no reduced MCMC runs nor auxiliary simulations are needed. More-
over, should the researcher desire a more accurate estimate, additional draws can be obtained
from the importance density with little computational costs. A prior sensitivity analysis is also
done following the procedure described in Section 4. More particularly, for each model only one
Markov sampler is run, and the MCMC draws are used to estimate the marginal likelihoods un-
der both prior specifications. The estimated log marginal likelihoods are verified by the method
of Chib and Jeliazkov (2001). The estimates, together with the numerical standard errors, are
reported in Table 4. The result suggests that the TVP-VAR model is the best model for the U.S.
post-war data among the three, under a variety of prior specifications. However, the relative
ranking of the VAR and DF-VAR models changes as we use different priors, highlighting the
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importance of a prior sensitivity analysis in marginal likelihood estimation.

Table 4: Log marginal likelihood (numerical standard error) for the three time-series models.

VAR TVP-VAR DF-VAR

S0 = I S0 = 0.1× I S0 = I S0 = 0.1 × I Va = 5× I Va = I

−905.4(0.005) −925.6(0.005) −899.8(0.24) −896.0(0.61) −906.0(0.46) −903.9(0.28)

5.2.3 Comparison with Other Methods

We now compare the empirical performance of the three marginal likelihood estimators: the
CE estimator, the estimator of Gelfand and Dey (1994) with the tuning function suggested in
Geweke (1999) (GD-G method) and the method of Chib (1995) and Chib and Jeliazkov (2001)
(CJ method). We use each of the three methods to estimate the marginal likelihoods of the
three VAR models, and compare the methods in terms of computation time and numerical
accuracy.

Table 5: Log marginal likelihood estimate, numerical standard error, and computation time (in
second) for the three methods. Variance reduction is approximately the amount of time needed
to have the same level of accuracy as the CE method.

VAR
estimate NSE time (s) var. reduction

GD-G -905.46 0.0030 60 3.8
CJ -905.37 0.0003 61 0.03
CE -905.37 0.0015 64 1.0

TVP-VAR
estimate NSE time (s) var. reduction

GD-G -898.9 0.09 4099 2.8
CJ -899.4 0.11 3132 3.2
CE -899.8 0.07 2386 1.0

DF-VAR
estimate NSE time (s) var. reduction

GD-G -906.0 0.03 640 0.4
CJ -904.8 0.09 740 3.9
CE -903.9 0.09 190 1.0

First, for computing the marginal likelihood of the VAR model via the CE method, we use
L = 2500 MCMC draws to obtain the optimal importance sampling density, and then sample
N = 100000 draws from the density obtained for the main importance sampling run. For both
the GD-G and CJ methods, we use L = 50000 MCMC draws to estimate the marginal likelihood.
Again, instead of one long chain, we run 10 parallel chains each of length L = 5000, such that
the numerical standard error of the estimate can be computed easily. We report in Table 5 the
estimate (in log), its numerical standard error and the computation time (in second) for each of
the three methods, as well as the approximate amount of time needed to have the same level of
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accuracy as the CE method. For this relatively low-dimensional model, all three methods work
very well, and the CJ method gives the most accurate estimate per unit of computation time.

We then perform the same exercise for the TVP-VAR model. The CE method uses L = 5000
MCMC draws for obtaining the optimal importance sampling density and N = 100000 draws for
the main importance sampling run; both the GD-G and CJ methods use L = 100000 MCMC
draws. Estimation of the marginal likelihood is much more time-consuming for this high-
dimensional model: the GD-G, CJ and CE methods take respectively 68, 52 and 40 minutes.
For the TVP-VAR model, the CE method is the fastest and most accurate. For instance, the CJ
method would need about 129 minutes to achieve the same level of accuracy as the CE method
(which takes only 40 minutes).

Finally, for the DF-VAR model, the CE method uses L = 5000 MCMC draws and N = 100000
draws from the importance density; both the GD-G and CJ methods use L = 100000 MCMC
draws. Although the CE method is the fastest, the GD-G method seems to provide the most
accurate estimate given the same computation time. However, it is also worth noting that the
GD-G estimate is slightly different from those obtained via the CJ and CE methods (taking
into account of the small numerical standard errors). Since both the CJ and GD-G methods
give biased estimates, while the CE estimate is unbiased, this small discrepancy in the estimates
might reflect a non-negligible bias in the GD-G estimate in this particular example.

6 Concluding Remarks

In this article we introduce the CE method to tackle an important problem in Bayesian econo-
metrics and statistics, namely, the estimation of marginal likelihood. Although the problem is
well-studied and many approaches already exist, the proposed method has the merit of being
both conceptually and computationally simple. In particular, it is essentially an importance
sampling approach, with the choice of importance density guided by a methodology founded
on formal optimization by minimizing the cross-entropy distance to the posterior density (i.e.
the intractable zero-variance importance density). Therefore, the importance density is cho-
sen to systematically minimize the variance of the resulting estimate, yet random samples can
be obtained from it conveniently with negligible computational costs. Furthermore, since the
draws are independent by construction, the simulation effort is much less compared to other
approaches should one wish to reduce the numerical standard error of the estimator. In the two
empirical applications studied, the CE method compares favorably to existing estimators.

Generally, this approach relies on the researcher designating a family of densities on which the
CE-based optimization method is implemented to operate. For many applications, as demon-
strated through two empirical examples in the text, this choice of distribution family is relatively
straightforward. Typically, it will be sufficient to match the chosen family with the class of prior
distributions employed by the model. Regardless of the family chosen, however, the eventual
optimization over this collection, as prescribed by the CE approach, amounts to an exercise
directly analogous to likelihood maximization.

This suggests, therefore, that when a particular choice of distribution family is inadequate,
straightforward extensions are readily available. For example, it may be worthwhile to consider
expanding a family of multivariate normal distributions to one consisting of a mixture of mul-
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tivariate normal distributions. Such a generalization presents little additional computational
difficulties – multivariate normal mixture likelihoods, while no longer analytically tractable, are
easily maximized by Expectation-Maximization based techniques. To that end, an interesting
and important extension of the algorithm presented in this paper would be one incorporating
the automatic selection of the parametric family. We leave the latter open for future work.

Aside from the fact that following the CE approach leads to a simple, yet methodological con-
struction of importance densities, the empirical examples discussed in Section 5 further illustrate
the overall utility of implementing importance sampling in this way to estimate marginal likeli-
hoods. In both cases, the proposed algorithm is not only fast and and easy to implement, but
it also gives very accurate marginal likelihood estimates with a relatively small sample size.

Appendix A: Efficient Simulation of the Gaussian State Space

Models

In this appendix we present an efficient Markov sampler proposed in Chan and Jeliazkov (2009)
for simulation and integrated likelihood estimation in state space models. We consider the
following linear Gaussian state space model:

yt = Xtβ +Gtηt + εt, (18)

ηt = Ztγ + Ftηt−1 + νt, (19)

for t = 1, . . . , T , where yt is an n×1 vector of observations, ηt is a q×1 latent state vector, (19)
is initialized with η1 ∼ N(Z1γ,D), and

(
εt
νt

)
∼ N

(
0,

(
Ω11 0

0 Ω22

))
.

Equation (18) is often referred to as the measurement or observation equation, while (19) is
called the transition or evolution equation. Define y = (y1, . . . ,yT ) and η = (η1, . . . ,ηT ), and
let θ represent the parameters in the state space model (i.e. β, γ, {Gt}, {Ft}, and the unique
elements of Ω11, Ω22, and D). The covariates {Xt} and {Zt} are taken as given and will be
suppressed in the conditioning sets below.

From (18)–(19) it is easily seen that the joint sampling density f(y |θ,η) is Gaussian. In fact,
stacking (18)–(19) over the T time periods, we have

y = Xβ +Gη + ε,

where

X =




X1

...
XT


 , G =




G1

. . .

GT


 , ε =




ε1
...
εT


 ,

with ε ∼ N(0, I ⊗Ω11). A change of variable from ε to y implies that

f(y |θ,η) = fN(y |Xβ +Gη, I⊗Ω11). (20)
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For the prior distribution of η, we note that the directed conditional structure for f(ηt |θ,ηt−1)
in (19) implies that the joint density for η is also Gaussian. To see this, define

H =




I

−F2 I

−F3 I
. . .

. . .

−FT I




and S =




D

Ω22

Ω22

. . .

Ω22




,

so that (19) can be written as Hη = Zγ + ν, where

Z =




Z1

...
ZT


 and ν =




ν1

...
νT


 ∼ N(0,S).

Therefore, by a simple change of variable from ν to η, we have

η |θ ∼ N
(
η̃,K−1

)
, (21)

where η̃ = H−1Zγ and the Tq × Tq precision matrix K is given by K = H′S−1H, i.e.,

K =




F′
2Ω

−1

22
F2 +D−1 −F′

2Ω
−1

22

−Ω−1

22
F2 F′

3Ω
−1

22
F3 +Ω−1

22
−F′

3Ω
−1

22

. . .
. . .

. . .

−Ω−1

22
FT−1 F′

TΩ
−1

22
FT + S−1

22
−F′

TΩ
−1

22

−Ω−1

22
FT Ω−1

22




.

(22)
It is important to realize that the precision matrix K is block-banded and contains a small
number of non-zero elements in a narrow band around the main diagonal. This observation is
important as it affords substantial saving in storage space and computation costs.

Since the densities f(y |θ,η) and f(η |θ) in (18) and (19) are both Gaussian, the standard
update for Gaussian linear regression (see, e.g. Koop, 2003; Gelman et al., 2003) implies that
the conditional posterior density f(η |y,θ) ∝ f(y |η,θ)f(η |θ) is also Gaussian:

η |y,θ ∼ N(η̂,P−1), (23)

where the precision P and the mean η̂ are given by

P = K+G′
(
I⊗Ω−1

11

)
G, (24)

η̂ = P−1
(
Kη̃ +G′

(
I⊗Ω−1

11

)
(y −Xβ)

)
. (25)

Since G′
(
I⊗Ω−1

11

)
G is banded, it follows that P is also banded. This allows sampling η |y,θ

without the need to carry out an inversion to obtain P−1 and η̂ in (25). Specifically, the mean
η̂ can be found in two steps. First, we compute the (banded) Cholesky factor C of P such that
C′C = P. Second, we solve

C′Cη̂ = Kη̃ +G′(I ⊗Ω−1

11
)(y −Xβ), (26)

forCη̂ by forward-substitution and then using the result to solve for η̂ by back-substitution. The
two steps are done in O(Tq2) operations. Similarly, to obtain a random draw from N(η̂,P−1)
efficiently, sample u ∼ N(0, I), and solve Cx = u for x by back-substitution. It follows that
x ∼ N(0,P−1). Adding the mean η̂ to x, one obtains a draw η ∼ N(η̂,P−1). We summarize
the above procedures in the following algorithm.
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Algorithm 4. Efficient State Smoothing and Simulation

1. Compute P in (24) and obtain its Cholesky factor C such that P = C′C.

2. Smoothing: Solve (26) by forward- and back-substitution to obtain η̂.

3. Simulation: Sample u ∼ N(0, I), and solve Cx = u for x by back-substitution and take
η = η̂ + x, so that η ∼ N(η̂,P−1).

Lastly, we describe an efficient method to evaluate the integrated likelihood f(y |θ), defined as

f(y |θ) =
∫

f(y |θ,η)f(η |θ)dη, (27)

where f(y |θ,η) is the likelihood and f(η |θ) represents the prior. This quantity is often used
in likelihood evaluation for classical and Bayesian problems involving optimization and model
comparison. Evaluating the integrated likelihood via the multivariate integration in (27) is
computationally intensive and often impractical. However, the derivation of the full condi-
tional density f(η|y,θ) discussed above provides a simple way to evaluate f(y |θ) without
invoking (27). Specifically, it follows from the Bayes’ theorem that integrated likelihood as

f(y |θ) = f(y |θ,η)f(η |θ)
f(η |y,θ) , (28)

where f(η |y,θ) denotes the full conditional posterior density of η given (y,θ). Due to the
banded nature of the prior and posterior precision matrices (K and P, respectively), evaluation
of the integrated likelihood f(y |θ) at the point θ can be done efficiently simply by evaluating the
right-hand-side of (28) at a single point (θ,η). Note that the choice is arbitrary, in particular,
the choice η = η̂ eliminates the need to compute the exponential part of the density function
in the denominator density.

Appendix B: Proofs of Propositions

Proof of Proposition 1. We first show that the marginal likelihood p(y) is finite for any given
y. Using Assumption 1 and the fact that the prior is proper, we have

p(y) =

∫
p(y |θ)p(θ)dθ 6 p(y | θ̂)

∫
p(θ)dθ = p(y | θ̂) < ∞.

Now write the VM estimator as the the average of N iid copies of the random variable Zn:

p̂vm(y) =
1

N

N∑

n=1

Zn,

where Zn = p(y |θn)p(θn)/f(θn;v
∗
vm) and θn ∼ f(θn;v

∗
vm). It is easy to see that

EZn =

∫
p(y |θn)p(θn)

f(θn;v∗
vm)

f(θn;v
∗
vm)dθn =

∫
p(y |θn)p(θn)dθn = p(y) < ∞.
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Therefore, by the (weak) law of large number, p̂vm(y) converges in probability to p(y) as
N → ∞. Next, note that

E [p̂vm(y)] = E

[
1

N

N∑

n=1

Zn

]
=

1

N

N∑

n=1

p(y) = p(y).

That is, the VM estimator is also unbiased.

The case for the CE estimator is similar. As before, write the CE estimator as the the average
of N iid copies of the random variable Wn:

p̂ce(y) =
1

N

N∑

n=1

Wn,

where Wn = p(y |θn)p(θn)/f(θn;v
∗
ce) and θn ∼ f(θn;v

∗
ce). Then, we have

EWn =

∫
p(y |θn)p(θn)

f(θn;v∗
ce)

f(θn;v
∗
ce)dθn =

∫
p(y |θn)p(θn)dθn = p(y) < ∞.

Since EWn = p(y) < ∞, by the (weak) law of large number, p̂ce(y) converges in probability to
p(y) as N → ∞. Finally,

E [p̂ce(y)] = E

[
1

N

N∑

n=1

Wn

]
=

1

N

N∑

n=1

p(y) = p(y).

Therefore, the CE estimator is also unbiased and consistent.

If the parametric family F contains the prior density p(·), then the variance of the VM estimator
is finite. Furthermore, the VM estimator has an asymptotic normal distribution.

Proof of Proposition 2. Let Z = p(y |θ)p(θ)/f(θ;v∗
vm), where θ ∼ f(θ;v∗

vm). Then the VM
estimator p̂vm(y) is simply the average of N independent copies of Z. We will first show that
the second moment of Z, EZ2, is finite. By the definition of v∗

vm in (4) and the assumption
that the prior density p(θ) is in the parametric family F , it follows that

EZ2 =

∫
p(y |θ)2p(θ)2
f(θ;v∗

vm)
dθ 6

∫
p(y |θ)2p(θ)2

p(θ)
dθ =

∫
p(y |θ)2p(θ)dθ < ∞.

Now, we have

Var(p̂vm(y)) =
Var(Z)

N
6

EZ2

N
< ∞.

Since EZ = p(y) and σ2 ≡ Var(Z) < ∞, by the central limit theorem, we finally have

√
N(p̂vm(y)− p(y))

d→N(0, σ2),

as N → ∞.
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